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Estimates of the quality of experimental maps are important

in many stages of structure determination of macromolecules.

Map quality is defined here as the correlation between a map

and the corresponding map obtained using phases from the

final refined model. Here, ten different measures of experi-

mental map quality were examined using a set of 1359 maps

calculated by re-analysis of 246 solved MAD, SAD and MIR

data sets. A simple Bayesian approach to estimation of map

quality from one or more measures is presented. It was found

that a Bayesian estimator based on the skewness of the density

values in an electron-density map is the most accurate of the

ten individual Bayesian estimators of map quality examined,

with a correlation between estimated and actual map quality

of 0.90. A combination of the skewness of electron density

with the local correlation of r.m.s. density gives a further

improvement in estimating map quality, with an overall

correlation coefficient of 0.92. The PHENIX AutoSol wizard

carries out automated structure solution based on any

combination of SAD, MAD, SIR or MIR data sets. The

wizard is based on tools from the PHENIX package and uses

the Bayesian estimates of map quality described here to

choose the highest quality solutions after experimental

phasing.
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1. Introduction

Structure solution in macromolecular crystallography is a

multi-step procedure in which more than one plausible

possibility often exists at the conclusion of each step. At the

start of the process, one or more MAD, SAD, SIR or MIR data

sets are collected and reduced to a list of indices and structure-

factor amplitudes (Leslie, 1992; Kabsch, 1993; Otwinowski &

Minor, 1997; Pflugrath, 1999). Even at this stage there are

often several possibilities for the space group that must be

considered. For each possible space group, the process con-

tinues with finding a substructure containing heavy atoms or

anomalously scattering atoms (Grosse-Kunstleve & Adams,

2003; Schneider & Sheldrick, 2002; Terwilliger & Berendzen,

1999a,b; Weeks et al., 2003). There is often more than one

plausible substructure at this stage. For example, in space

groups that are not chiral the two possible hands of the

substructure cannot normally be distinguished. Furthermore,

for MAD data sets there may be alternative solutions found by

searching for the substructure using different data sets (from

various wavelengths or combining data from different wave-

lengths using FA values; Terwilliger, 1994). Similarly, for MIR

data sets there may also be substructures found for several

different derivatives. In addition to these intrinsic possibilities,
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it is possible that more than one set of parameters or even

more than one set of software might be used to generate

possible solutions. The potential heavy-atom substructures

found are then used to calculate the phases of structure

factors, which are in turn used as the starting point for density

modification (Wang, 1985) and subsequent model building

(e.g. Perrakis et al., 1999; Terwilliger et al., 2008). Normally,

one of the best indications of map quality is that the map can

be interpreted in terms of an atomic model.

If every possibility at every stage were investigated fully by

calculating maps, carrying out density modification and model

building, the process might take many hours or days to

complete. To speed up the process, the possibilities at each

stage are generally ranked, with only the highest ranked

possibilities being considered for the next step. This approach

can be efficient, but if it is to yield the best solution at the end

it requires a reliable method for deciding which members of a

set of solutions are of the highest quality.

The definition of ‘quality’ when applied to electron-density

maps normally refers to the correlation between the values of

electron density in the map and the values of electron density

in a hypothetical ‘true’ map for the same structure. In this

work, when tests are carried out to assess various measures of

map quality, the ‘true’ quality or map correlation is calculated

between the map in question and a map obtained using

measured amplitudes but with phases calculated from a

refined model of the corresponding structure. Maps that have

a high map correlation as defined in this way are generally

more useful for model building and interpretation than those

with a low map correlation. However, it should be noted that

map correlation is not a perfect way to assess the utility of a

map, as low-resolution terms are generally stronger and

therefore have a higher relative contribution to the correlation

than high-resolution terms, while the high-resolution terms are

generally essential for the interpretation of a map. Conse-

quently, a map could have a moderately high correlation to a

model map, based largely on low-resolution terms, yet not be

interpretable.

A number of methods for evaluating the quality of

experimental macromolecular electron-density maps have

been developed. The methods can generally be grouped into

real-space calculations and reciprocal-space calculations.

Real-space methods are based on an examination of the

electron-density map and generally answer the question ‘Does

this map look like an electron-density map of a macro-

molecule?’ There are many distinctive features of macro-

molecular electron-density maps that can be used to answer

this question. A good map may be expected to have contin-

uous chains of density (Baker et al., 1993). It may have local

patterns of density that reflect shapes and interatomic spacings

common to macromolecules (Colovos et al., 2000; Terwilliger,

2003). It may have a distribution of electron densities with a

positive skewness, reflecting the large number of points with

moderate or low electron density, the lack of points with

negative density and the points with very positive electron

density located near atoms in the structure (Podjarny, 1976;

Lunin, 1993). There may be a large variation (contrast) in the

local r.m.s.d. of electron density, reflecting regions of the

structure containing the macromolecule (with high local

variation) and solvent (with low local variation; Terwilliger &

Berendzen, 1999a; Sheldrick, 2002). The contiguous nature of

the regions of relatively flat solvent may be detected from the

correlation of local r.m.s.d. at one point in a map with that at

neighboring points (Terwilliger & Berendzen, 1999b). If non-

crystallographic symmetry is present in the structure, then the

correlation of NCS-related density can be detected (Cowtan &

Main, 1998; Vellieux et al., 1995; Terwilliger, 2002a).

Reciprocal-space methods for evaluation of map quality

generally address questions involving structure factors and

expectations about the structure such as the model for the

solvent region or for the heavy-atom substructure. One such

question is simply ‘Given the anomalously scattering atom

model and the observed data, what is the expected correlation

between the experimental map and the true map?’ The value

of the figure of merit of phasing (Blow & Crick, 1959;

Terwilliger & Berendzen, 1999a,b), when estimated correctly,

is similar in magnitude to the correlation between the

experimental and true maps and can be used as an estimate of

this correlation. Another question addresses the data and the

expectations about the electron-density map: ‘Is the amplitude

of each structure factor consistent with the value expected

based on the amplitudes and phases of all other reflections and

the model of the solvent region?’ This question can be

answered based on the R factor in the first cycle of density

modification (which reflects the agreement between each

measured amplitude and an estimate of that amplitude based

on all other amplitudes and phases along with expectations

about features in the map; Cowtan & Main, 1996; Terwilliger,

2001). A related question can be asked about the phases: ‘If a

phase is estimated from the model of the solvent region,

measured amplitudes of structure factors and the experi-

mental values of all other phases, is this phase correlated with

its experimentally determined value?’ This question can be

answered using the correlation of experimental phases with

map probability phases obtained in statistical density modifi-

cation (Terwilliger, 2001). A third question that might be

asked is ‘Do the phases calculated using only the highest peaks

in the map match the experimental phases?’ This question can

be answered by truncating the density at a high level, calcu-

lating phases from the map and comparing these with the

experimental phases (Baker et al., 1993).

It is important to note that the measures of map quality are

analyzed here for their utility in estimating the qualities of

experimental electron-density maps, as opposed to maps that

have been calculated using a partially correct model or maps

that have had density modification applied. An important

difference between experimental maps and those obtained

using a model or based on density modification is that in the

latter cases the maps have been specifically adjusted in order

to maximize one or more of the properties that are being

measured. For example, density modification typically flattens

the solvent region of the map. Similarly, a map calculated from

a model will tend to have a high skewness of the density values

and a high connectivity of high electron density. Some of these
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measures may also be useful in these two other important

cases, but the values of each measure corresponding to

a particular quality of map are likely to be substantially

different.

In this work, we implement ten different measures of

quality of experimental electron-density maps, develop a

simple Bayesian approach to estimating map quality from

each and show how the individual estimates can be combined

to yield useful overall estimates of map quality. These map-

quality estimates are incorporated into the PHENIX AutoSol

wizard and are used to make decisions during automated

structure solution.

2. Materials and methods

2.1. Structure solution with the PHENIX AutoSol wizard

The PHENIX AutoSol wizard carries out structure solution

for SAD/MAD or MIR/SIR/SIRAS data and any combination

of these. If data representing more than one heavy-atom

substructure were available, the data were grouped into ‘data

sets’ with common heavy-atom substructures. All the structure

solutions described here had been carried out previously and

refined structures were available in each case. Default values

were used here for most parameters, but the number and type

of anomalous and heavy-atom scatterers and initial values of

scattering factors were taken from this prior work.

2.1.1. Analysis with phenix.xtriage. Each available set of

data was analyzed using phenix.xtriage (Zwart et al., 2005) for

circumstances such as twinning, translational noncrystallo-

graphic symmetry, unexpectedly strong or weak reflections or

groups of reflections or anisotropic overall atomic displace-

ment parameters that may complicate structure determina-

tion. The data were corrected for anisotropy before structure

solution was carried out if the overall anisotropy correction

yielded values that were highly anisotropic (by default,

defined as greater than a 1.5-fold ratio among the values of the

parameters along the three principal reciprocal axes and

greater than 20 Å2 difference between the highest and lowest

values). If an anisotropy correction was applied, then the

resulting corrected data were used for structure solution only

and not for refinement (as an anisotropy correction is applied

as part of the refinement process itself).

2.1.2. Substructure solution with HySS. For each data set

(i.e. a MAD or SAD data set or an SIR data set) possible

heavy-atom substructures were found using the hybrid

substructure search (HySS; Grosse-Kunstleve & Adams, 2003)

from isomorphous, anomalous or dispersive differences or

from FA values (Terwilliger, 1994). The high-resolution limit

used for the search was typically 3 Å. By default, HySS was

run multiple times on each data set using a different random

seed each time and the solution with the highest correlation

coefficient between structure factors calculated from the

heavy-atom model and the structure-factor differences or FA

values was kept. The correlation coefficient was also used,

along with the number of sites found, to determine whether to

continue searching. Normally, the search was carried out ten

times unless the expected number of sites was found and a

correlation of 0.3 was obtained. By default, if no solution was

found with a correlation of at least 0.2 at a particular resolu-

tion, then up to two additional high-resolution limits were

tested in steps of 1 Å (e.g. using a high-resolution limit of 3 Å

followed if necessary by high-resolution limits of 4 and 5 Å.

2.1.3. Phasing with Phaser and SOLVE and map evaluation.

Each potential heavy-atom substructure found above (along

with its inverse) was used to calculate phases with Phaser (for

SAD phasing; McCoy et al., 2004) or SOLVE (for MAD, SIR

and MIR phasing; Terwilliger & Berendzen, 1996, 1997,

1999a,b). (In the examples shown in this work and in PHENIX

versions up to v.1.3 the hand of the space group was fixed; later

versions of PHENIX automatically invert chiral space groups

when considering the inverse of the substructure.) The

resulting phases and amplitudes of structure factors, along

with weights (the figure of merit of phasing), were used to

calculate experimental electron-density maps using a high-

resolution limit of 2.5 Å (or lower if data were not available to

this resolution). The high-resolution limit was applied in order

to reduce the effects of variable resolution limits on the

features of electron-density maps. These maps were evaluated

with the measures of map quality described in this work and

the overall Bayesian estimate of quality was used to rank

solutions. In cases where two solutions have very similar

heavy-atom parameters (r.m.s.d. among heavy-atom coordi-

nates of less than 1/10 of the high-resolution limit of the data),

only the solution with the higher estimate of quality was

considered. The estimate of uncertainty in the map quality was

used to identify solutions that might plausibly (5% possibility

or greater) be the best solution and normally all such solutions

were considered at each step. By default, up to three of the

highest ranking solutions (six for MIR structures) for the

heavy-atom substructure were used to calculate phases and

weights at the full available resolution of the data and for

density modification.

In the structure determinations carried out below for

development of the map evaluation criteria, rankings were

instead obtained using a Z-score procedure (Terwilliger &

Berendzen, 1999a,b) based only on the skewness of the elec-

tron density (as defined below).

2.1.4. Statistical density modification with RESOLVE. The

experimental phases obtained above were used as a starting

point for statistical density modification using RESOLVE

(Terwilliger, 2000).

In statistical density modification with the PHENIX Auto-

Sol wizard, a probabilistic estimate of the boundary between

macromolecule and solvent is identified in two ways and that

leading to the lower R factor in density modification is used.

The first method (Wang, 1985) is based on the local r.m.s.

density, smoothing the squared density using a sphere (Leslie,

1987) with a smoothing radius (rsmooth) given by an empirically

derived formula (chosen by optimizing parameters carrying

out density modification using model data),

rsmooth ðÅÞ ¼ 2:41 Å ðdmin=1 ÅÞ0:9hmi�0:26; ð1Þ
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where dmin is the high-resolution limit of the data and hmi is

the mean figure of merit of phasing. The second method for

solvent-boundary identification uses a comparison of histo-

grams of density based on model maps calculated with

partially randomized phases with local histograms of density

in the experimental map to assign a probability that each point

in the map is part of the macromolecule or part of the solvent

region. In both cases a probabilistic solvent boundary is

obtained (Terwilliger, 1999).

Noncrystallographic symmetry (NCS) is used in density

modification if it is detected based on the heavy-atom sub-

structure and the presence of correlated density at NCS-

related positions in the electron-density map (Terwilliger,

2002a,b). The value of rsmooth described above is used as a

smoothing radius in a local correlation map to identify the

region over which NCS holds (Vellieux et al., 1995).

2.1.5. Model building with RESOLVE. After density modi-

fication, the PHENIX AutoSol wizard carries out automated

model building using a single cycle of building with the

PHENIX AutoBuild wizard (Terwilliger et al., 2008) or using

rapid methods for building secondary structure of proteins

and nucleic acids (T. Terwilliger, unpublished work). Initially,

a secondary-structure-only model is built into each map. The

correlation between a map calculated from the model and the

density-modified map is then determined. If the value of the

map–model correlation is less than a preset value (typically

0.35), then the building procedure is repeated with a standard

cycle of building using the methods in the PHENIXAutoBuild

wizard. If a map–model correlation of a given value (typically

0.20) or greater is obtained for at least one solution, then the

top solution is identified as that with the highest value of the

map–model correlation. If a lower map–model correlation is

obtained, then the top solution is identified (see below) based

on the Bayesian estimates of quality using the skewness of

electron density (skew) and the correlation of local r.m.s.

density (r2
RMS).

2.2. Evaluation of measures of map quality

A set of measures of map quality were applied to experi-

mental maps (or structure-factor amplitudes, phases and

weights) obtained from real but re-enacted structure deter-

minations. Each of the structures considered had been deter-

mined previously, so that phases from a refined model could

be used with measured amplitudes to calculate a model map to

use as a standard. The ‘true’ quality of each map was taken to

be the correlation with the corresponding standard map

calculated at the same nominal resolution. Each measure of

quality was applied to each map and the resulting scores

were saved along with the corresponding ‘true’ quality. The

structure-solution process was automatically carried out by

the PHENIX AutoSol wizard and each experimentally phased

map that was obtained during the structure-solution process

was examined in this way. To reduce the number of near-

duplicate solutions considered, all solutions for a structure

that had nearly identical values of the map correlation to the

standard map (within a range of �0.0005 in map correlation)

were considered to be the same and only the first was used in

the analysis. For comparisons involving two possible enan-

tiomers of a solution, the two enantiomers of a solution

sometimes differed only slightly (i.e. the heavy-atom sub-

structure was nearly centrosymmetric). In these analyses of

enantiomeric pairs, only those that differed by an r.m.s.d. of at

least 0.5 Å were considered.

For analysis of map quality, electron-density maps and

structure factors were calculated using a high-resolution limit

of 2.5 Å (if data were available to that resolution), as

described above for the PHENIX AutoSol wizard. Before

applying each of the measures of map quality, the experi-

mental maps were normalized to a mean of zero and a

variance of unity. They were then adjusted in two steps to

reduce the contribution from high density at the coordinates

of heavy-atom sites. (The high density at heavy-atom sites

might otherwise lead to high values for the skewness, NCS

correlation, contrast and possibly other measures.) Firstly, the

electron density within a radius (r) of each heavy-atom site

used in phasing (where r was given by twice the resolution of

the data or 5 Å, whichever was greater) was limited to values

less than or equal to twice the r.m.s. (2�) of the map. Secondly,

the electron density everywhere in the map was limited to

values in the range �5� to +5�. This modified map is referred

to below as the normalized truncated experimental electron-

density map.

Weighted electron-density maps were calculated in the

PHENIX environment (Adams et al., 2002) using RESOLVE

(Terwilliger, 2000) on a grid with a spacing of 1/3 of the high-

resolution limit of the data or finer. Map correlations were

obtained by calculating the correlation coefficient of a pair of

maps at all the grid points in the asymmetric unit of the unit

cell. Model–map correlations were calculated in the same way,

except that one map was calculated from the model and an

overall B factor (b_overall) was adjusted to maximize the

correlation. This correlation was further maximized by

adjusting a parameter (rFFT) representing the radius around

atoms in the model to be included in FFT-based density

calculations (typically about equal to the high-resolution limit

of the data). For protein chains, an increment in isotropic

thermal factors (beta_b) for each bond between side-chain

atoms and the C� atom was also applied to maximize the

correlation.

2.3. Real-space map-quality measures

The measures of map quality used in this work are

described in this and the following section and are summarized

in Table 1.

2.3.1. Skewness of electron density. The skewness (skew)

of each normalized truncated map (as described in x2.1) was

calculated using the relation

skew ¼ h�3i=h�2i3=2; ð2Þ

where the electron density (�) was calculated at all the grid

points in the asymmetric unit. This quantity reflects the

skewness of the density values in the map.

research papers

Acta Cryst. (2009). D65, 582–601 Terwilliger et al. � Bayesian estimates of map quality in the PHENIX AutoSol wizard 585
electronic reprint



2.3.2. Contrast of electron density. The contrast between

the r.m.s. (root-mean-square) density in the solvent region and

the r.m.s. density in the macromolecular region was calculated

from the standard deviation of the local r.m.s. density over the

entire asymmetric unit (Terwilliger & Berendzen, 1999a;

Sheldrick, 2002). The normalized truncated density described

in x2.2 was first squared. The squared density was then

smoothed by averaging all values within a moving sphere with

radius (r) given by the larger of 6 Å or twice the high-

resolution limit of the data. The standard deviation (s) of the

smoothed squared density was then calculated. To compensate

for the effect of the solvent fraction in the crystal (f) on the

resulting value, the standard deviation (s) calculated above

was multiplied by the factor [(1 � f)/f ]1/2 to yield the contrast

c,

c ¼ ½ð1 � f Þ=f �1=2s: ð3Þ
The correction factor [(1 � f)/f ]1/2 was chosen because it leads

to a value of 1 for the contrast for a map for which the entire

solvent region has zero variance and the nonsolvent region has

a constant and nonzero variance.

2.3.3. Correlation of local r.m.s. density. The presence of

contiguous flat solvent regions in a map was detected using the

correlation coefficient of the smoothed squared electron

density, calculated as described above, with the same quantity

calculated using half the value of the smoothing radius,

yielding the correlation of r.m.s. density, r2
RMS. In this way the

local value of the r.m.s. density within a small local region

(typically within a radius of 3 Å) is compared with the local

r.m.s. density in a larger local region (typically within a radius

of 6 Å). If there were a large contiguous solvent region and

another large contiguous region containing the macro-

molecule, the local r.m.s. density in the small region would be

expected to be highly correlated with the r.m.s. density in the

larger region. On the other hand, if the ‘solvent’ region were

broken up into many small flat regions, then this correlation

would be expected to be smaller.

2.3.4. Flatness of the solvent region. A normalized trun-

cated electron-density map was partitioned between regions

of solvent and macromolecule as described in x2.1.4. The r.m.s.

electron density in the solvent region (r.m.s.SOLVENT) and in

the region of the macromolecule (r.m.s.PROT) were then

calculated. The flatness (F) of the solvent region was

expressed as the difference between the two,

F ¼ r:m:s:PROT � r:m:s:SOLVENT: ð4Þ

2.3.5. Number of regions enclosing high density. A

threshold of density (t) was found such that 5% of the volume

of the asymmetric unit of the crystal had a density greater than

this threshold t. All the grid points in the map above the

threshold t were marked. The number of discrete regions

(Nregions) containing marked points was then counted. For this

purpose, a discrete region was defined as a set of all marked

grid points that can be connected by tracing from one adjacent

marked grid point to another (including symmetry-related

marked grid points). To partially compensate for the fact that

lower resolution maps have fewer grid points, the number of

regions was multiplied by the high-resolution limit of the data

used to calculate the map (dmin). To further compensate for

the volume of the asymmetric unit containing the macro-

molecule, the number of regions was then divided by the

fraction of the asymmetric unit that contains macromolecule

(f) and the volume of the asymmetric unit (V) to yield the

normalized number of regions per unit volume (Nr),

Nr ¼ Nregions=ðfVÞ: ð5Þ

2.3.6. Overlap of NCS-related density. If noncrystallo-

graphic symmetry was found in the heavy-atom substructure

for a solution, then the map was examined for the presence of

correlated density at NCS-related locations in the map

(Cowtan & Main, 1998; Vellieux et al., 1995). The overlap

(ONCS) between density at NCS-related locations was used to

evaluate noncrystallographic symmetry,

ONCS ¼ h�i�ji; ð6Þ
where �i and �j are density at NCS-related locations in the

asymmetric unit and the average is either within a sphere with

radius rsmooth (as described above for identifying the solvent

boundary) or over a region within the asymmetric unit. The

values of density �i used were those from the normalized

truncated map described above. The region where NCS

applies was identified as a contiguous region in which the local
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Table 1
Real-space measures of map quality tested in this work.

Expected properties

Method Symbol Basis Perfect map Random map

Skewness of electron density skew High positive density and no negative density
in a good map

Positive skewness Near-zero skewness

Contrast of electron density c Solvent and macromolecule have different
r.m.s. variation in densities

High contrast Low contrast

Correlation of local r.m.s. density r2
RMS Solvent region is contiguous so local r.m.s. is

correlated with neighboring local r.m.s.
High correlation Low correlation

Flatness of electron density F Solvent region has nearly flat electron
density

High value of flatness Low value of flatness

Number of regions enclosing
high density

Nr Chains of a macromolecule can be represented
by a few connected regions of density

Few (but extended) connected
regions

Many short connected regions

Overlap of NCS-related density ONCS If NCS is present, NCS-related density is similar High overlap Low overlap

electronic reprint



mean of the overlap is at least cMIN, where this cutoff cMIN was

selected to yield a total volume occupied by all NCS copies

that was approximately the same as the total volume (f)

occupied by the macromolecule in the asymmetric unit

(Terwilliger, 2002a). For the purposes of evaluating a map, the

mean value of the overlap of NCS density, ONCS, was calcu-

lated over this entire NCS region. If the value of the overlap

found was less than OMIN (typically, OMIN = 0.3), the NCS was

ignored.

2.4. Reciprocal-space map-quality measures

2.4.1. R factor and phase correlation from statistical

density modification. The amplitudes and phases of struc-

ture factors calculated using statistical density modification,

but without including the experimental phase probabilities,

can be compared with the observed amplitudes and experi-

mental phases (Cowtan & Main, 1996; Terwilliger, 2001).

These comparisons yield an R value (RDENMOD) for the

amplitudes and a mean cosine of the phase difference

(mDENMOD) for the phases.

2.4.2. Figure of merit of phasing. The mean figure of merit

of phasing (hmi) was used directly from Phaser (for SAD

phasing calculations; McCoy et al., 2004) or SOLVE (for MIR

and MAD phasing calculations; Terwilliger & Berendzen,

1999a,b) as an estimate of the quality of a map.

2.4.3. Density truncation (peak-picking). The number of

non-H atoms (n) in the asymmetric unit was roughly estimated

from the fraction of the asymmetric unit that contains

macromolecule (f) and the volume of the asymmetric unit (V)

using an approximate average atomic volume Vo = 19 Å3

(Stroud & Fauman, 1995) using the relation n = fV/Vo. The

highest 3n/4 grid points in the asymmetric unit of the electron-

density map were then identified and C atoms were placed at

these grid points. A map was calculated from these C atoms

and the correlation (r2
TRUNCATION) with the original map was

obtained after adjusting an overall thermal factor to maximize

this correlation.

2.5. Bayesian estimates of map quality

A simple Bayesian approach was used to create estimators

of map quality based on one or more of the measures of map

quality described in xx2.3 and 2.4. For each measure (e.g.

skew), the comparison of maps with the corresponding solved

structures yielded a list of values of ‘true’ map correlation

(r2
MODEL) and the measure of quality (e.g. skew). A two-

dimensional histogram was created to represent the joint

distribution p(r2
MODEL, skew). The distributions were sampled

with 30 bins for each variable, with the range of allowed values

of each ranging from �0.1 to 1.1. Any values obtained outside

this range were put in the closest available bin. To compensate

for the fact that insufficient data (1359) were present to

generate an accurate value for all 900 bins, the values of

p(r2
MODEL, skew) were smoothed using a Gaussian smoothing

algorithm in which p(r2
MODEL, skew) was convoluted with a

Gaussian function G(r) with a radius (�) of three bins

{G(r) / exp[�(u2 + v2/(2�2)]}, reducing the effective number

of bins to about 100.

To estimate the value of map quality (r2
MODEL) from a new

observation of the quality measure (skew), Bayes’ rule

(Hamilton, 1964) was used,

pðr2
MODELjskewÞ ¼ Apoðr2

MODELÞpðskewjr2
MODELÞ; ð7aÞ

where the normalization factor A assures that the integrated

probability for r2
MODEL is unity and is given by

A ¼ 1=
R

r20
½poðr20Þpðskewjr20Þ� dr20: ð7bÞ

(7a) says that the (posterior) probability of a particular value

of r2
MODEL, given the measurement skew, is the prior prob-

ability of r2
MODEL [po(r2

MODEL)] multiplied by the conditional

probability [p(skew|r2
MODEL)] of measuring this value of skew

given that r2
MODEL is the correct value, divided by a normal-

ization factor. We calculated the conditional probability

p(skew|r2
MODEL) in (7a) from the joint probability distribution

p(r2
MODEL, skew) using the relation

pðskewjr2
MODELÞ ¼ pðr2

MODEL; skewÞ=pðr2
MODELÞ: ð7cÞ

For the present work, we assume that the prior probability

distribution po(r2
MODEL) is uniform on [0, 1].

If several measures of map quality (e.g. skew and the

contrast c) have been measured, then the estimates can be

combined using the same approach:

pðr2
MODELjskew; cÞ ¼ Apoðr2

MODELÞpðskew; cjr2
MODELÞ; ð8aÞ

A ¼ 1=
R

r20
½poðr20Þpðskew; cjr20Þ� dr20: ð8bÞ

We approximate the probability distribution p(skew, c|r2
MODEL)

as the product of the two two-dimensional conditional prob-

abilities that we have estimated above,

pðskew; cjr2
MODELÞ / pðskewjr2

MODELÞpðcjr2
MODELÞ; ð9Þ

which amounts to assuming that the skewness and contrast c

are conditionally independent for a given fixed r2
MODEL value.

To obtain the estimated value and variance of r2
MODEL given

a set of observations of predictor variables (e.g. skew, c), we

used the probability distribution given by (8a) and calculated

the expectation value of hr2
MODELi,

hr2
MODELi ¼

R

r20
pðr20jskew; cÞr20 dr20; ð10aÞ

h�2i ¼ R

r20
pðr20jskew; cÞðr20 � hr2

MODELiÞ2 dr20 : ð10bÞ

An improved estimate of the conditional probability distri-

butions such as p(skew, c|r2
MODEL) could potentially be

obtained by calculating the covariance of the variables skew

and c for each fixed value of r2
MODEL and assuming a normal

distribution of skew and c for this fixed value of r2
MODEL. This

formulation differs from that in (9) by including correlations

between skew and c instead of assuming that they are zero and

also through the assumption of normality in the distributions

of skew and c for fixed r2
MODEL. Leaving out the fixed value of
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r2
MODEL for clarity, representing the two-dimensional vector

(skew, c) as x = (skew, c) and the mean values of skew and c for

this value of r2
MODEL as u = (hskewi, hci), we can write

(Hamilton, 1964)

pðskew; cÞ ’ exp½� 1
2 ðx� uÞ��1ðx� uÞT �½2� detð�Þ�; ð11aÞ

where � is the covariance matrix with elements �ij repre-

senting the variation of skew and c around their means hskewi
and hci,

�12 ¼ �21 ¼ hðskew � hskewiÞðc� hciÞi ¼ covðskew; cÞ;
ð11bÞ

�11 ¼ hðskew � hskewiÞ2i ¼ �2
skew; ð11cÞ

�22 ¼ hðc� hciÞ2i ¼ �2
c : ð11dÞ

To test this approach we used the data described above, but

grouped in bins of r2
MODEL. The observations in each bin of

r2
MODEL were analyzed using (11a)–(11d) based on the values

of the N predictor variables (skew, c . . . ) for all the observa-

tions in that bin to obtain an approximation of the conditional

probability distribution p(skew, c|r2
MODEL) for that bin. This

set of approximations (one for each bin of r2
MODEL) was then

used in (8) to estimate r2
MODEL for individual sets of obser-

vations of the N predictor variables. This approach gave

correlations that were at most marginally improved over those

obtained using estimates of the conditional probability

distribution p(skew, c|r2
MODEL) based on (9). For example,

using skew and correlation of local r.m.s. density (r2
RMS) as

predictor variables and analyzing the same data shown in

Table 3 (but without cross-validation), the overall correlation

coefficient between the true values of r2
MODEL and estimates

obtained using (9) (in which independence of skew and r2
RMS is

assumed) was 0.925. Using (10) (assuming Gaussian distribu-

tions for skew and r2
RMS) and setting the covariance terms to

zero (assuming independence of skew and r2
RMS) yielded a

value of 0.926; the same analysis but including the covariance

terms yielded a value of 0.927. As this approach did not

significantly improve the correlation, it was not used. Fig. 1(c)

suggests that the assumption of normality in the distributions

of the predictor variables (e.g. skew and r2
RMS) for fixed

r2
MODEL is not well justified. This may partially explain the

poor performance of this approach.

2.6. Structures and data used

Data from 47 structures in the PHENIX library of MAD,

SAD and MIR data sets were used along with 246 MAD and

SAD structures from the Joint Center for Structural Genomics

(JCSG; http://www.jcs.org). The structures from the PHENIX

library included 1029B (PDB code 1n0e; Chen et al., 2004),

1038B (1lql; Choi et al., 2003), 1063B (1lfp; Shin et al., 2002),

1071B (1nf2; Shin, Roberts et al., 2003), 1102B (1l2f; Shin,

Nguyen et al., 2003), 1167B (1s12; Shin et al., 2005), aep-

transaminase (1m32; Chen et al., 2002), armadillo (3bct; Huber

et al., 1997), calmodulin (1exr; Wilson & Brunger, 2000), cobd

(1kus; Cheong et al., 2002), cp-synthase (1l1e; Huang et al.,

2002), cyanase (1dw9; Walsh et al., 2000), epsin (1edu; Hyman

et al., 2000), flr (1bkj; Tanner et al., 1996), fusion-complex

(1sfc; Sutton et al., 1998), gene-5 (1vqb; Skinner et al., 1994),

gere (1fse; Ducros et al., 2001), gpatase (1ecf; Muchmore et al.,

1998), granulocyte (2gmf; Rozwarski et al., 1996), groEL (1oel;

Braig et al., 1995), group2-intron (1kxk; Zhang & Doudna,

2002), hn-rnp (1ha1; Shamoo et al., 1997), ic-lyase (1f61;

Sharma et al., 2000), insulin (2bn3; Nanao et al., 2005), lyso-

zyme (unpublished results; CSHL Macromolecular Crystallo-

graphy Course), mbp (1ytt; Burling et al., 1996), mev-kinase

(1kkh; Yang et al., 2002), myoglobin (A. Gonzales, personal

communication), nsf-d2 (1nsf; Yu et al., 1998), nsf-n (1qcs; Yu

et al., 1999), p32 (1p32; Jiang et al., 1999), p9 (1bkb; Peat et al.,

1998), pdz (1kwa; Daniels et al., 1998), penicillopepsin (3app;

James & Sielecki, 1983), psd-95 (1jxm; Tavares et al., 2001),

qaprtase (1qpo; Sharma et al., 1998), rab3a (1zbd; Ostermeier

& Brunger, 1999), rh-dehalogenase (1bn7; Newman et al.,

1999), rnase-p (1nz0; Kazantsev et al., 2003), rnase-s (1rge;

Sevcik et al., 1996), rop (1f4n; Willis et al., 2000), s-hydrolase

(1a7a; Turner et al., 1998), sec17 (1qqe; Rice & Brunger, 1999),

synapsin (1auv; Esser et al., 1998), synaptotagmin (1dqv;

Sutton et al., 1999), tryparedoxin (1qk8; Alphey et al., 1999),

ut-synthase (1e8c; Gordon et al., 2001) and vmp ( l8w; Eicken

et al., 2002).

The structures from the JCSG included PDB (Bernstein et

al., 1977; Berman et al., 2000) entries 1o1x (Xu et al., 2004),

1vjf, 1vjr, 1vk4, 1vk8, 1vk9, 1vkd, 1vkn, 1vl0, 1vl5, 1vli, 1vlo,

1vly, 1vm8, 1vmg, 1vmi, 1vp8, 1vpm, 1vpz (Rife et al., 2005),

1vqr (Xu, Schwarzenbacher, McMullan et al., 2006), 1vqs,

1vqy, 1vqz, 1vr0 (DiDonato et al., 2006), 1vr3 (Xu, Schwar-

zenbacher, Krishna et al., 2006), 1vr5, 1vr8 (Xu, Krishna et al.,

2006), 1vrm (Han et al., 2006), 1z82, 1z85, 1zbt, 1zej, 1zh8,

1zko, 1ztc, 1zx8 (Jin et al., 2006), 1zy9, 1zyb, 2a3n, 2aam, 2aml,

2ax3, 2b8n (Schwarzenbacher et al., 2006), 2etd, 2ets, 2evr,

2f4i, 2f4l, 2fg0, 2fg9, 2fna, 2ftr, 2fup, 2fur, 2g0w, 2gb5, 2gc9,

2gf6, 2gfg, 2ghr (Zubieta et al., 2007), 2gno, 2go7, 2gpi, 2gpj,

2grj, 2gvh, 2h1q, 2h1t, 2h9f, 2hcf, 2hh6, 2hhz, 2hi0, 2hq7, 2hq9,

2hr2, 2hsz, 2huh, 2hx1, 2hx5, 2hxv, 2i02, 2i8d, 2i9w, 2ig6, 2ii1,

2ilb, 2isb, 2it9, 2itb, 2nuj, 2o08, 2o2g, 2o2x, 2o2z, 2o3l, 2o62,

2oa2, 2oaf, 2oc6, 2od5, 2ogi, 2oh1, 2oh3, 2oik, 2ooj, 2ook,

2op5, 2opl, 2oqm, 2ord, 2osd, 2otm, 2ou3, 2ou5, 2ou6, 2own,

2oyo, 2ozg, 2ozj, 2p10, 2p1a, 2p7i, 2p8j, 2pbl, 2peb, 2pfw, 2pg4,

2pgc, 2pke, 2pn1, 2pq7, 2pr7, 2prr, 2prv, 2pv4, 2pv7, 2pwn,

2py6, 2pyq, 2pyx, 2q02, 2q04, 2q0t, 2q14, 2q3l, 2q78, 2q7x,

2q9k, 2q9r, 2qe6, 2qe9, 2qez, 2qg3, 2qhp, 2qj8, 2ql8, 2qml,

2qpx, 2qr6, 2qtp, 2qtq, 2qw5, 2qww, 2qwz, 2qyv, 2r01, 2r0x,

2r1i, 2r3b, 2r44, 2r4i, 2r9v, 2ra9, 2ras, 2rcc, 2rcd, 2rd9, 2rdc,

2re3, 2re7, 2rfp, 2rgq, 2rha, 2rhm, 2rij, 2ril, 2rkh, 3b5e, 3b5o,

3b77, 3b7f, 3b81, 3b8l, 3bb5, 3bb9, 3bcw, 3bdd and 3bde.

3. Results and discussion

3.1. Measures of map quality

A key goal of this work was to identify one or more quality

measures of maps or of structure factors that are simple to

calculate and that can yield accurate estimates of the qualities
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of the corresponding electron-density maps. Table 1 lists six

measures of map quality examined here that are based on the

features of the maps (real-space measures) and Table 2 lists

four additional measures that depend on the structure factors

and phases used to calculate maps. The measures were chosen

to represent a range of possible measures that cover many

important features of electron-density maps and structure

factors.

To evaluate these measures of map quality, we carried out a

re-analysis of data for 246 previously solved MAD, SAD and

MIR structures, creating electron-density maps during the

structure-determination process and analyzing them with each

of the measures in Tables 1 and 2. As the structures are all

known, the ‘true’ map quality for each map could be calcu-

lated as the correlation coefficient r2
MODEL between each map

and the corresponding map obtained using phases calculated

from the refined model of the structure (after any necessary

origin shifts are applied) using the PHENIX tool phenix.

get_cc_mtz_mtz.

For each of the 246 data sets, the PHENIX AutoSol wizard

was used to scale the data, calculate anomalous or isomor-

phous differences and identify potential heavy-atom solutions.

As both hands of the heavy-atom substructure would normally

be considered, at least two sets of heavy-atom solutions were

generally obtained for each data set. Additionally, as MIR and

MAD data sets have more than one set of anomalous or

isomorphous differences, these data sets generally yielded

additional heavy-atom solutions. Also for MIR and MAD

structure determinations, difference Fourier analysis was used

to generate even more heavy-atom solutions. Consequently,

there were a total of 1359 heavy-atom solutions analyzed in

this work even though there were only 246 data sets.

Figs. 1(a)–1(j) show the values of each measure plotted

against r2
MODEL for 1359 maps based on structures calculated

from the MAD, SAD and MIR data listed in x2.6. The maps

represent the phases obtained at several stages in structure

determination. Some were calculated using heavy-atom solu-

tions found from anomalous or isomorphous differences or

from FA values with HySS (Grosse-Kunstleve & Adams, 2003).

Others were calculated using the corresponding substructures

with inverted hand. Others were obtained from difference

Fourier (MIR) and anomalous difference Fourier (MAD)

analyses. In the case of MIR, a large number of additional

solutions were obtained by combinations of partial solutions

from different derivatives.

The general features of the plots in Fig. 1 are illustrated by a

discussion of Fig. 1(a), which shows the skewness of electron

density (skew) in experimental maps as a function of the true

map quality r2
MODEL. In Fig. 1(a) the purple squares corre-

spond to data sets with a nominal resolution lower than 2 Å

and the black diamonds to data sets with resolutions of 2 Å or

higher. (Note that the data for all these calculations were

truncated at a resolution of 2.5 Å, so that most resolution-

dependent differences are likely to be the consequence of

data-set-dependent decreases of intensities with resolution

rather than the resolution of the data.)

Fig. 1(a) shows that the skewness of the electron density

depends strongly on the map quality, as represented by the

correlation of the density in the map with that of a model map

(r2
MODEL). The skewness is approximately zero for maps with a

correlation in the range 0.0 < r2
MODEL < 0.2. It increases slightly

for maps with correlations in the range 0.2 < r2
MODEL < 0.4 and

then increases substantially for maps with higher correlations

(r2
MODEL > 0.4). The standard deviation of the values of the

skewness is about 0.05–0.10 over most ranges of map corre-

lation. For example, for values of map correlation with r2
MODEL

< 0.2 the mean skewness is �0.02 and the standard deviation is

0.07 and for values of map correlation with 0.4 < r2
MODEL < 0.5

the mean skewness is 0.14 with a standard deviation of 0.06.

For values of map correlation with 0.6 < r2
MODEL < 0.7 the

mean skewness is 0.38 with a standard deviation of 0.10.

Another way to view these relationships is to note that the

difference (0.16) in the mean values of the skewness between

values of map correlation of r2
MODEL < 0.2 and values of map

correlation in the range 0.4 < r2
MODEL < 0.5 is about twice the

standard deviation of the skewness in either range. This means

that the skewness can be expected to differentiate between

maps with model correlations r2
MODEL of zero and 0.4, but that

it cannot differentiate them correctly all of the time. This can

also be seen directly from Fig. 1(a), in which some of the

values of skewness for maps with model correlations r2
MODEL

near 0.4 are lower than values for maps with near-zero values

of r2
MODEL.

The maps represented in Fig. 1(a) that are based on high-

resolution data sets (<2 Å) have values of skewness that are

similar to those of lower resolution data sets. This similarity is
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Table 2
Reciprocal-space measures of map quality tested in this work.

Expected properties

Method Symbol Basis Perfect map Random map

Phase correlation from statistical
density modification

mDENMOD Phases from first cycle of density modification are unbiased
and are correlated with experimental phases

High mDENMOD Low mDENMOD

R factor from statistical density
modification

RDENMOD Amplitudes for a reflection can be calculated from phases and
amplitudes of all other reflections and expected features of
the map

Low RDENMOD High RDENMOD

Density truncation r2
TRUNCATION Much of the information in a map of a macromolecule

consists of the density at points in the map near atomic
positions

High r2TRUNCATION Low r2TRUNCATION

Mean figure of merit of phasing hmi Estimates of accuracy of experimental phases are an
approximate upper bound on quality of the map

High hmi Low hmi
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most likely to reflect the fact that all the data in these calcu-

lations were truncated at a resolution of 2.5 Å.

Several of the other nine measures of map quality examined

have relationships to model map correlation similar to those

described above for the skewness. The contrast (c; Fig. 1b),

correlation of local r.m.s. density (r2
RMS; Fig. 1c) and flatness of

the solvent region (F; Fig. 1d) in particular show very similar

behaviour, except that none of these discriminate as well as

the skewness between maps of moderate quality (correlations

r2
MODEL near 0.4) and those of very low quality with correla-

tions near zero. These three measures are all related as they all

are based on the presence of solvent and nonsolvent regions in

the crystal. However, the calculations differ in that the con-

trast (c) does not require knowledge of the solvent boundary

while the flatness (F) does. Additionally, the correlation of

local r.m.s. density reflects the contiguous nature of the solvent

region while the contrast (c) and flatness (F) reflect the

presence of a solvent region, whether contiguous or not.

A somewhat different behavior is shown by the number of

contiguous regions (Nr) required to enclose the highest 5% of

density in a map (Fig. 1e). This measure decreases with

increasing map quality, but only slightly, so that it is not a

strong discriminator between maps of low and moderate

quality.

The overlap of NCS-related density (Fig. 1f) is a measure

which, as implemented here, only applies to maps where NCS

can be identified from the symmetry present in the heavy-

atom sites. It is therefore different from the measures

discussed so far and cannot be used as a general measure of

map quality. It is nevertheless useful in differentiating

between maps with very high model map correlations

(r2
MODEL) and those that have lower model map correlation.

Figs. 1(g) and 1(h) show the phase correlations (mDENMOD)

and R factors (RDENMOD) obtained from the first cycle of
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Figure 1
Measures of the quality of electron-density maps and structure factors. Measures of quality were calculated as described in the text for 1359 sets of
structure factors and associated maps. Each measure is plotted with an abscissa equal to the correlation of density of the map with a map calculated from
a final model (r2

MODEL). Measures based on structures determined at resolutions of 2 Å or higher are shown as black diamonds and those at resolutions
lower than 2 Å are shown as purple squares. All measures of quality and the correlation with model density (r2

MODEL) were calculated at a resolution of
2.5 Å or the nominal resolution of the data, whichever is the lower. (a) Skewness of electron density. (b) Contrast of electron density. (c) Correlation of
local r.m.s. density. (d) Flatness of solvent region.
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statistical density modification using the same structure

factors, phases and weights that were used to calculate the

electron-density maps analyzed in Figs. 1(a)–1(f). In the first

cycle of statistical density modification with RESOLVE

(Terwilliger, 2000), estimates of the phase and amplitude of a

reflection k were obtained using only information from all the

other reflections in the data set. The amplitude and phase for

reflection k from the density-modification procedure can then

be compared with the experimentally observed amplitude and

the ‘experimental’ phase (derived using isomorphous or
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Figure 1 (continued)
(e) Number of regions enclosing high density. (f) Overlap of NCS-related density. (g) Phase correlation from statistical density modification. (h) R factor
from statistical density modification. (i) Density truncation. (j) Figure of merit of phasing.
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Figure 2
Comparisons of cross-validated estimates of map quality with actual map quality. Measures of map quality as shown in Fig. 1 were used in (7a) and (8a) to
estimate overall map quality. The calculations were carried out one data set at a time. For each data set, joint probability distributions of each measure of
quality and true quality [e.g. p(skew, r2

MODEL)] were calculated excluding data from all solutions for that structure. These cross-validated joint probability
distributions were used in (7a) and (8a) to estimate map quality using the measures of quality for each map associated with that data set. In each case, the
true map quality (r2

MODEL) is plotted as a function of the Bayesian estimates of map quality. (a) Estimates of map quality using the skewness of electron
density in (7a). (b) Estimates using the correlation of local r.m.s. density in (7a). (c) Estimates using the skewness and correlation of local r.m.s. density in
(8a).

anomalous differences) to yield an R factor for density

modification (RDENMOD) and a mean cosine of the phase

difference (mDENMOD). Fig. 1(g) shows that, as expected, the R

factor for density modification decreases with increasing map

quality, while Fig. 1(h) shows that the phase correlation

increases over the same range.

Fig. 1(i) shows that the correlation of pseudo-maps calcu-

lated using dummy atoms placed at the highest peaks in a map

with their corresponding original maps (r2
TRUNCATION) is

weakly related to the quality of the map. It seems possible that

more sophisticated methods of map skeletonization (Baker et

al., 1993) might be more useful in map evaluation than our

simple measure.

Finally, Fig. 1(j) shows that the mean figure of merit of

phasing (hmi) is related to the quality of the map, but that

there are many maps with very low correlation to the corre-

sponding model maps that nevertheless have high mean

figures of merit. This relationship can be understood by con-

sidering that the figures of merit of phasing of two maps that

are calculated using the same data but opposite enantiomers

of the heavy-atom substructure are normally identical for

SAD phasing if all the anomalous scatterers are of the same

type. Typically, one of these maps may have a high correlation

to the model map while the other may have a very low

correlation.

Overall, Fig. 1 shows that several measures of map quality

based on different features of the map and on the structure

factors and phases leading to the map have strong relation-

ships to the quality of the electron-density map, with the

skewness of electron density clearly being one of the best

indicators of map quality.

In Fig. 1(a) there is one point at (r2
MODEL = 0.03,

skew = 0.31) that is quite far from all the others, with a value of

the skewness that is far greater than all the other points with

very small values of r2
MODEL. This point corresponds to a

heavy-atom solution found during the analysis of data from

PDB entry 2re3 which yields an electron-density map that is

incorrect but not at all random. The crystal has translational

noncrystallographic symmetry and the electron density in the

electron-density map for this solution is offset from that the

correct map by an origin shift that is noncrystallographic.

Consequently, our analysis of the two maps, which only allows

crystallographic translational offsets, shows a near-zero

correlation of the maps despite considerable similarity (a
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correlation of 0.73 when offset). We note that the translation

involved does correspond to a real difference: if the coordi-

nates of PDB entry 2re3 are shifted by this translation

(0, 0.735, 0) in space group P43212 the amplitudes of the

structure factors do change and the R factor based on

experimental amplitudes for the model in this position is 0.53,

compared with a value of 0.23 for the deposited model. Note

that this solution also appears in Fig. 2(a) at the position (0.60,

0.03) and in Fig. 2(b) at the position (0.62, 0.03) where it is

again an outlier.

3.2. Estimation of map quality using features of the map and

of the structure factors used to calculate the map

Fig. 1 showed that each of the six different features of

electron-density maps and the four characteristics of structure

factors we examined depend in some way on the quality of the

corresponding map. We used the Bayesian approach described

in x2.5 to use this information to estimate map quality from

these ten features. The general idea of this approach is very

simple. Imagine that a particular map has been examined,

yielding a value of the skewness of electron density of 0.20.

Considering the plot in Fig. 1(a), it is reasonable to conclude

that this map is very likely to have a correlation (r2
MODEL) with

the corresponding model map in the range 0.4 < r2
MODEL < 0.6,

because nearly all examples in Fig. 1(a) with a skewness of

about 0.20 are in this range. Equation 7(a) is a mathematical

way to make this statement. Equation 8(a) is a similar state-

ment, except that it includes more than one measure of map

quality. As described in x2.5, we assume here that the various

measures of map quality (skewness, contrast etc.) are inde-

pendent. This allows the simple calculation in (8a) to be used

to estimate r2
MODEL from several measures of map quality.

Fig. 2(a) shows the results of using (7a) to estimate r2
MODEL

from the skewness of electron density. In Fig. 2(a) the abscissa

is the Bayesian estimate of r2
MODEL using the skewness of

electron density and the ordinate is the true value of r2
MODEL.

To ensure that the parameters in the Bayesian estimator did

not contain information on the specific cases being tested, a

cross-validation procedure was used in which all solutions for

the structure being examined were excluded when con-

structing the Bayesian estimators. Fig. 2(a) shows that in cases

where the true value of r2
MODEL is in the range 0.0 < r2

MODEL <

0.2, the estimates of r2
MODEL all have very similar values of

about 0.1. This can be understood from Fig. 1(a), in which the

skewness is seen to be insensitive to values of r2
MODEL in this

range. The Bayesian estimates of r2
MODEL for low values of

skewness are all close to the midpoint of this range, as they are

simply the average of plausible values of r2
MODEL given the

observation of the value of the skewness. For higher values of

r2
MODEL, the estimates of r2

MODEL are closer to the true values.

Overall, the correlation coefficient between the Bayesian

estimates and the true values of r2
MODEL is 0.90 and the r.m.s.

error in prediction of r2
MODEL is 0.10. As a check on our

procedures, we note that the mean uncertainty estimates for

r2
MODEL obtained from the Bayesian procedure was 0.11, which

is quite similar to the actual r.m.s. error in prediction of

r2
MODEL of 0.10.

Table 3 summarizes the accuracy of the Bayesian estimates

of map quality based on each of the measures described in

Tables 1 and 2 (with the exception of the overlap of NCS

density, which is not included because it does not apply to

most of the maps in our tests). For each measure, Table 3 lists

the values of the correlation coefficient of the Bayesian esti-

mates and the true map quality (r2
MODEL) along with the r.m.s.

prediction error in r2
MODEL. Overall, the skewness of electron

density, with a correlation coefficient between Bayesian esti-

mates and true values of r2
MODEL of 0.90, is the most reliable

indicator of map quality, with the correlation of local r.m.s.

density being the next best (correlation of 0.85) and with

contrast, flatness of solvent region and density-modification

phase correlations and R factor giving only slightly poorer

predictions of r2
MODEL, with correlations in the range 0.75–

0.80.

To identify an optimal combination of measures for esti-

mation of map quality, we began with the best single measure

(skew) and used (9) to combine information from each of the

other measures. The measure giving the best prediction of

r2
MODEL in combination with the skewness of electron density

was the correlation of local r.m.s. density (r2
RMS; Table 3).

Fig. 2(b) shows how the estimates of map quality obtained

using just the correlation of r.m.s. electron density compare

with actual map quality and Fig. 2(c) shows estimates based on

both skewness and correlation of r.m.s. electron density. The

correlation of r.m.s. density was the next-best single predictor

after skew; in addition, the correlation of prediction errors

from these two variables was relatively low (0.61; Table 4). The

assumptions in (9) are therefore relatively well justified and it

is not surprising that the resulting estimator is improved over

that using just the skewness of electron density. This process

was continued but no further improvement was obtained in

the Bayesian estimator. The optimized combination of

measures based on skewness and correlation of local r.m.s.

density yielded a correlation coefficient between the Bayesian

estimates and true values of r2
MODEL of 0.92 and an r.m.s.

prediction error of 0.09 (Table 3 and Fig. 2c).

3.3. Identification of the hand of heavy-atom substructures

using measures of map quality

A particularly important application of measures of map

quality is the identification of the hand of heavy-atom sub-
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Table 3
Cross-validated prediction correlation.

Quality measure(s)
Prediction correlation
coefficient

R.m.s. prediction
error

skew 0.90 0.10
c 0.78 0.15
r2
RMS 0.85 0.12
F 0.80 0.14
Nr 0.42 0.20
mDENMOD 0.80 0.10
RDENMOD 0.77 0.14
r2TRUNCATION 0.48 0.21
hmi 0.42 0.21
skew and r2

RMS 0.92 0.09
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structures. The hand of the heavy-atom substructure cannot

normally be identified directly during substructure determi-

nation by direct methods such as the HySS procedure (Grosse-

Kunstleve & Adams, 2003) used here. Consequently, some

procedure is needed for identifying which hand of the heavy-

atom substructure is correct. Figs. 3(a)–3(i) compare the

values obtained for nine measures of map quality based on 353

pairs of heavy-atom substructures with correct and inverted

handedness from the 186 data sets in this work for which the

space group was not chiral (structures with chiral space groups

were excluded so the hand of the space group could be fixed in

this analysis). The mean figure of merit of phasing is not shown
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Figure 3
Comparisons of measures of map quality for pairs of maps based on enantiomorphic heavy-atom substructures. For structures in nonchiral space groups,
all pairs of solutions derived from enantiomorphic pairs of heavy-atom substructures were selected. The member of the pair leading to the map with the
higher correlation coefficient to the corresponding model map was identified as the ‘correct’ hand and the other as the ‘inverse’ hand. The value of each
measure of map quality for the correct hand is plotted as the abscissa in each plot and the value of the measure for the corresponding inverse hand is the
ordinate. Maps based on MAD data are represented as black diamonds, those from MIR data (all maps examined in this figure are from single
derivatives) are represented as red triangles and those from SAD data are represented as blue squares. (a) Skewness of electron density. (b) Contrast of
electron density. (c) Correlation of local r.m.s. density. (d) Flatness of solvent region.

Table 4
Correlation of prediction errors.

Values of r2
MODEL were estimated for each measure of map quality using (7a) as in Fig. 3. The true values of r2

MODEL were then subtracted, yielding prediction errors
for each map for each measure of map quality. The correlation coefficients (r2) of prediction errors among the various measures of map quality are listed.

skew c r2
RMS F Nr mDENMOD RDENMOD r2

TRUNCATION hmi
skew 1
c 0.69 1
r2
RMS 0.60 0.82 1
F 0.73 0.95 0.84 1
Nr 0.61 0.86 0.61 0.79 1
mDENMOD 0.63 0.81 0.79 0.88 0.66 1
RDENMOD 0.66 0.79 0.74 0.79 0.77 0.84 1
r2
TRUNCATION 0.54 0.82 0.63 0.71 0.88 0.61 0.76 1
hmi 0.55 0.73 0.61 0.68 0.69 0.64 0.70 0.85 1
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because it is essentially identical for the two hands of the

substructure in all the cases examined. The 706 maps repre-

sented by these 353 pairs are a subset of the 1359 maps used in

the calculations shown in Fig. 1.

It is somewhat remarkable that these nine measures of map

quality all give very good discrimination between the correct

and incorrect hands of heavy-atom substructures (Fig. 3 and

Table 5), even though they are not all so useful in estimating

the absolute quality of maps (Table 3). The best discrimination

between correct and incorrect hands is obtained with the

skewness of electron density (Fig. 3a), as expected from the

high correlation of estimates of map quality based on skew-

ness with actual map quality (Table 3). Using the skewness of

electron density to make decisions on handedness (Fig. 3a),

98% of decisions (in cases where the quality of the maps for

the two hands differs by at least 0.05) would correctly identify

the map with the higher quality (Table 5). Note that for SIR or

MIR data without anomalous differences none of these

techniques can identify the correct hand because the inverse

hand of the heavy atoms leads to a map that has inverse
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Figure 3 (continued)
(e) Number of regions enclosing high density. (f) Overlap of NCS-related
density. (g) Phase correlation from statistical density modification. (h) R
factor from statistical density modification. (i) Density truncation.
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chirality but is otherwise identical. A similar argument would

partially apply in cases where an anomalous signal is present

but is weak. This situation is presumably the cause of the large

number of MIR-derived points near the diagonal of the panels

in Fig. 3.

3.4. Identification of the highest quality density-modified

map for a structure

The scoring procedures described above are based on an

analysis of the phases and structure-factor amplitudes corre-

sponding to an experimental electron-density map. Prior to

final map interpretation, however, the experimentally deter-

mined phases of structure factors are normally optimized by

density modification (Wang, 1985). Several additional para-

meters are required for density modification, including iden-

tification of noncrystallographic symmetry (if any), solvent

content and the solvent region. It seemed possible that these

parameters might not always be chosen optimally and the best

experimental maps might not always lead to the best density-

modified maps. Consequently, some additional method of

scoring the density-modified maps might be useful.

To investigate this possibility, we carried out structure

determination with the data sets used in Fig. 1, this time with

default parameters in the PHENIX AutoSol wizard including

Bayesian estimates of experimental map quality based on the

skewness of electron density (skew) and the correlation of

local r.m.s. density (r2
RMS). For each structure, the final steps

were to carry out density modification with RESOLVE

(Terwilliger, 2000) on the top-ranked solution or solutions and

then to build a preliminary atomic model. In cases where there

was one solution that was much better than all others (see x2),

then only that solution was used in density modification.

However, in most cases there were multiple solutions with

similar Bayesian estimates of quality and up to three (MAD,

SAD) or six (MIR) of these were used in density modification.

Fig. 4(a) shows the relationship between the qualities of

experimental maps and the qualities of the corresponding

density-modified maps for 569 experimental maps for 260 data

sets. For experimental maps of high quality (correlation with

model map over 0.6), the quality of the density-modified map

is generally (but not always) very high, typically ranging from

0.75 to 0.90. For very poor experimental maps (correlation

with model map of less than 0.2) the density-modified maps

were also uniformly poor (typical map correlation of 0–0.1).

On the other hand, for experimental maps of moderate quality

(map correlation between 0.2 and 0.5) the quality of the

density-modified maps vary over a wide range (from about 0.1

to about 0.9).

Much of the variability in density modification for experi-

mental maps of moderate quality illustrated in Fig. 4(a) could

arise from the intrinsic differences in solvent content, non-

crystallographic symmetry, type of experiment and resolution

between the different structures. To examine this, we have

plotted in Fig. 4(b) the true map qualities of density-modified

maps for all 176 pairs of solutions from Fig. 4(a) that are from

the same structure, use the same number of non-crystallo-

graphic symmetry operators (if any) in density modification

and have values of true experimental map correlation within
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Table 5
Decision-making accuracacy for enantiomeric pairs.

The percentage of cases in which the higher (or lower, as appropriate) value of
the quality measure is associated with the higher value of the actual map
correlation coefficient with the corresponding model map. Only cases in which
the actual map correlations differ by at least 0.05 are considered.

Quality measure(s) Percentage of correct predictions

skew 0.98
c 0.94
r2
RMS 0.95
F 0.94
Nr 0.95
ONCS 0.90
mDENMOD 0.93
RDENMOD 0.94
r2
TRUNCATION 0.97

Figure 4
Map qualities of density-modified maps. (a) Qualities of density-modified
maps as a function of the qualities of the corresponding experimental
maps. (b) Comparison of qualities of pairs of density-modified maps for
the same structure derived from experimental maps of similar quality (see
text).
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0.05 of each other. In Fig. 4(b) each point corresponds to one

pair of solutions. The abscissa is the value of density-modified

map quality for the solution with the higher value of experi-

mental map quality and the ordinate is the density-modified

map quality for the solution with lower experimental map

quality. Each member of such a pair has identical solvent

content, resolution, actual noncrystallographic symmetry,

number of noncrystallographic symmetry operators identified

and experiment type and differs only slightly in true experi-

mental map quality. Fig. 4(b) shows that when all these factors

are controlled the quality of pairs of density-modified maps is

very similar in most cases, but substantial differences in the

qualities of the density-modified maps remain in some cases.

The remaining variation in effects of density modification

illustrated in Fig. 4(b) suggests that it might be useful to carry

out a final ranking of solutions based on a measure of quality

of the corresponding density-modified maps. We used the

map–model correlation between density-modified maps and

the preliminary atomic models built with the PHENIX

AutoSol wizard as such a measure of quality. Table 6 shows the

utility of this map–model correlation in identifying the solu-

tion with the best density-modified map for each of the 149

structures used in Fig. 4(a) in which there was more than one

solution tested by density modification and model building

and in which the model-building process yielded a model with

a model–map correlation of at least 0.20.

The first row in Table 6 provides a background for this

analysis by considering the use of our Bayesian estimates of

experimental map quality to identify the best solutions. In

Table 6 experimental map quality and density-modified map

quality are examined separately. Using the Bayesian estimates

(which are based on the experimental maps), the best

experimental map for a particular structure could be identified

91% of the time. The worst error in identification of the best

experimental map corresponded to a difference in map

correlation of 0.29. Next, density-modified maps were exam-

ined. The solution with the highest Bayesian estimate of

experimental map quality led to the best density-modified map

in 88% of cases; however, the worst error in identification of

the best density-modified map corresponded to a very large

difference in map correlation of 0.58.

Using the map–model correlation for the model built into

the density-modified maps in decision-making the situation is

reversed, with the best experimental map identified only 87%

of the time and the best density-modified map identified 92%

of the time. Further, the density-modified map yielding the

highest map–model correlation was never worse than the very

best density-modified map obtained by more than a difference

in correlation of 0.26, showing that the model–map correlation

is a useful criterion for final ranking of solutions. Overall,

Table 6 indicates that model–map correlation is an improve-

ment over Bayesian estimates of experimental map quality for

the identification of the best density-modified map.

3.5. Using the PHENIX AutoSol wizard to redetermine

structures from the PHENIX structure library

To test the overall utility of the Bayesian estimates of map

quality in the overall context of structure determination, we

carried out automated structure determinations on all 48

MAD, SAD and MIR structures in the PHENIX structure

library with the PHENIX AutoSol wizard. The structures in

this library range from relatively straightforward cases of SAD

and MAD structure determination to considerably more

complex cases that involved combinations of SAD or MAD

with MIR and difficult-to-solve heavy-atom substructures. In

the tests carried out here, only one source of phase informa-

tion was used for each structure (i.e. MAD, SAD or MIR),

except in the case of the fusion-complex structure (PDB code

1sfc; Sutton et al., 1998), in which SAD and SIR data were

combined.

To evaluate the overall contribution of the Bayesian scoring

approach described here to structure solution, we compared

the qualities of the final density-modified maps obtained with

the PHENIX AutoSol wizard using each of three different

methods of making decisions during the heavy-atom solution

and phasing steps of structure determination. The first method

(‘perfect scoring’) was to use the actual correlation coefficient

of each experimental map with that of the corresponding

idealized map (using phases from a refined model) to decide

which map was best during structure solution. Once density-

modified maps had been calculated, the correlations of those
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Table 6
Decision-making accuracies in choosing the solution with the best experimental or density-modified map.

The percentage of correct predictions of best maps is the percentage of cases in which the solution with the highest value of the quality measure has a map
correlation coefficient with the corresponding model map within 0.02 of that of the best obtained for any solution for that structure. The analysis is based on 372
sets of structure factors and associated maps obtained from 149 data sets as in Fig. 1, selecting the top-ranked 2–6 solutions and carrying out density modification
with RESOLVE (Terwilliger, 2000) to yield density-modified maps. A model was built into each density-modified map using a rapid method for building helices
and strands. If the value of the map–model correlation was less than 0.35, then the building procedure was repeated with a standard cycle of building using the
methods in the PHENIX AutoBuild wizard (Terwilliger et al., 2008) and the value of the map–model correlation from the full standard procedure was used. Only
structures for which at least one model–map correlation was at least 0.20 are included in the analysis. The worst error in identification of the best maps is the largest
value of the difference between the correlation coefficient of the best map with the corresponding model map and that of the map with the highest value of the
quality measure.

Percentage of correct predictions of best maps Worst error in identification of best maps

Quality measure Experimental maps Density-modified maps Experimental maps Density-modified maps

Bayesian estimate using skew and r2
RMS of experimental map 91 88 0.29 0.58

Map-model correlation for model built into density-modified
map

87 92 0.40 0.26
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maps with the idealized map were used for the final ranking.

The second method (‘Bayesian scoring’) was to use the

Bayesian estimates based on the combination of the skewness

of electron density and the correlation of local r.m.s. density

for decision-making during structure solution. Once density-

modified maps had been calculated, a model was built and

the correlation between this model and the density-modified

map was used for final ranking. The third method (‘random
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Figure 5
Comparison of quality of density-modified maps obtained using the skewness of electron density and correlation of local r.m.s. density for scoring with
those obtained using the true map quality (correlation to the corresponding model map) for scoring. See text for details. The light blue bars labeled
‘Perfect scoring’ correspond to running the PHENIX AutoSol wizard and using the actual experimental map quality to make decisions at each step prior
to obtaining density-modified phases and using the actual density-modified map quality to make the final choice of solution. The dark maroon bars
labeled ‘Bayesian scoring’ correspond to using the Bayesian scores for experimental maps based on the skewness of electron density and correlation of
local r.m.s. density and using the model–map correlation to choose the final density-modified solution. The light green bars labeled ‘Random scoring’
correspond to using random scores to make decisions about experimental map quality and model–map correlation to choose the final solution. Each
‘random scoring’ value is the average of ten separate runs of PHENIX AutoSol wizard carried out with differing random seeds. Note that the ‘perfect
scoring’ method does not necessarily lead to the best final map. For example, an experimental map that is not the best one but is chosen by another
scoring method could adventitiously yield additional sites that lead to a better final solution. (a) Structures determined using MAD. Structures shown are
aep-transaminase (PDB code 1m32; Chen et al., 2002), armadillo (3bct; Huber et al., 1997), cobd (1kus; Cheong et al., 2002), cp-synthase (1l1e; Huang et
al., 2002), cyanase (1dw9; Walsh et al., 2000), epsin (1edu; Hyman et al., 2000), gene-5 (1vqb; Skinner et al., 1994), gere (1fse; Ducros et al., 2001), gpatase
(1ecf; Muchmore et al., 1998), group2-intron (1kxk; Zhang & Doudna, 2002), ic-lyase (1f61; Sharma et al., 2000), lysozyme (unpublished results; CSHL
Macromolecular Crystallography Course), mbp (1ytt; Burling et al., 1996), mev-kinase (1kkh; Yang et al., 2002), nsf-d2 (1nsf; Yu et al., 1998), p32 (1p32;
Jiang et al., 1999), p9 (1bkb; Peat et al., 1998), pdz (1kwa; Daniels et al., 1998), psd-95 (1jxm; Tavares et al., 2001), rab3a (1zbd; Ostermeier & Brunger,
1999), s-hydrolase (1a7a; Turner et al., 1998), synapsin (1auv; Esser et al., 1998), tryparedoxin (1qk8; Alphey et al., 1999) and vmp (1l8w; Eicken et al.,
2002) (b) Structures determined using SAD: 1029B (1n0e; Chen et al., 2004), 1038B (1lql; Choi et al., 2003), 1063B (1lfp; Shin et al., 2002), 1071B (1nf2;
Shin, Roberts et al., 2003), 1102B (1l2f; Shin, Nguyen et al., 2003), 1167B (1s12; Shin et al., 2005), rnase-p (1nz0; Kazantsev et al., 2003), calmodulin (1exr;
Wilson & Brunger, 2000), fusion-complex (1sfc; Sutton et al., 1998), insulin (2bn3; Nanao et al., 2005), myoglobin (A. Gonzales, personal
communication), nsf-n (1qcs; Yu et al., 1999), sec17 (1qqe; Rice & Brunger, 1999) and ut-synthase (1e8c; Gordon et al., 2001). Note that fusion-complex
was solved with SAD plus SIR. (c) Structures determined using MIR: flr (1bkj; Tanner et al., 1996), granulocyte (2gmf; Rozwarski et al., 1996), groEL
(1oel; Braig et al., 1995), hn-rnp (1ha1; Shamoo et al., 1997), penicillopepsin (3app; James & Sielecki, 1983), qaprtase (1qpo; Sharma et al., 1998), rh-
dehalogenase (1bn7; Newman et al., 1999), rnase-s (1rge; Sevcik et al., 1996), rop (1f4n; Willis et al., 2000) and synaptotagmin (1dqv; Sutton et al., 1999).
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scoring’) was to use random scores for decision-making during

structure solution and then to use the model–map correlation

for the final ranking. Fig. 5(a) illustrates these comparisons for

MAD structure determinations, Fig. 5(b) illustrates them for

SAD structure determinations and Fig. 5(c) for MIR structure

determinations.

For MAD, SAD and MIR structure determinations the

decision-making procedure using Bayesian estimates of

experimental map quality and model–map correlations as

estimates of density-modified map quality led to density-

modified electron-density maps that were very similar in

quality to those obtained using the decision-making process

based on actual map quality (Fig. 5). This indicates that the

quality of final density-modified maps produced by the

PHENIX AutoSol wizard are essentially as good as they can

be with any decision-making system, given the algorithms and

parameters used to find heavy-atom sites and to carry out

phasing, density modification and model building in the

wizard.

In addition to the ‘perfect scoring’ and ‘Bayesian scoring’

approaches shown in Fig. 5, the figure includes density-

modified map quality for solutions obtained using random

scores for experimental maps (but still using model–map

correlation to evaluate final density-modified maps). Each

‘random scoring’ value is the average of ten runs with differing

random seeds, so they represent an average value of the

quality of final maps obtained with random scoring of

experimental maps. The quality of these maps is generally

lower than that of those obtained with either of the other two

methods, showing that the scoring is contributing important

information to the structure-determination process.

Although Fig. 5 indicates that the quality of the final maps

obtained with the PHENIX AutoSol wizard are essentially as

good as they can be with the structure-solution algorithms in

the wizard, it is likely that the number of solutions that need to

be examined at each stage in structure determination could be

lowered if improved estimates of experimental map quality

were available. The default parameters in the PHENIX

AutoSol wizard defining the number of solutions to keep at

each stage were chosen to be large enough that the best

solution was generally in the set that was considered at each

stage using the 48 MAD, SAD and MIR data sets examined in

Fig. 5. If improved scoring methods are developed, then a

systematic re-examination of these default parameters would

probably be useful. In the meantime, modifying these para-

meters to include larger or smaller numbers of solutions at

each stage may be useful in cases that are more challenging or

that are more straightforward, respectively.

The skewness of electron-density values in an electron-

density map has been recognized for some time as a potential

indicator of the quality of the map (Podjarny, 1976; Lunin,

1993). As the skewness of a map is not a familiar quantity to

most crystallographers, we illustrate it for ‘poor’ and ‘good’

experimental electron-density maps. Both maps were based on

experimental data for aep-transaminase (PDB code 1m32;

Chen et al., 2002) and were obtained during the course of

automated analysis of this data with the PHENIX AutoSol

wizard. The poor map was calculated using an incorrect set of

heavy-atom sites and the good map was calculated using a

largely correct set of heavy-atom sites. Fig. 6 shows histograms

of the number of grid points in each map with various values

of electron density. The x axis in Fig. 6 corresponds to electron

density in a map normalized to the r.m.s. in the map after

subtracting the mean of the map from all values. The dotted

lines in Fig. 6 illustrate the fraction of grid points in the poor

map that correspond to each value of normalized electron

density. It may be seen that this histogram of densities from a

poor map has a very nearly Gaussian shape. This poor map

had a skewness of 0.004 and its correlation to a map based on

the refined model of the structure was 0.04. In contrast, the

solid lines in Fig. 6 illustrate the fraction of grid points in the

good map corresponding to various values of electron density.

This histogram differs from that derived from the poor map in

that it is not symmetrical. The peak is slightly negative of the

origin and it has a distinct tail on the positive side of the peak.

This good map had a skewness of 0.4 and its correlation to the

map based on the refined model was 0.66. Note that the

differences in shapes of the histograms based on poor or good

maps can be rather small, as in Fig. 6. Nevertheless, the

skewness can usually be estimated very accurately because

there are typically tens of thousands of grid points in the maps,

so that the shapes of the histograms are very precisely defined.

4. Conclusions

Each of the ten measures of the quality of experimental

electron-density maps evaluated here has some utility in

estimating the true quality of these maps. These measures of

map quality reflect a wide range of characteristics (Tables 1

and 2) ranging from the flatness of the solvent region typically

found in macromolecular structures to the connectivity of

regions of high electron density corresponding to the chains of

polymers in these structures. Overall, the skewness of electron
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Figure 6
Histograms of density corresponding to a poor map (dotted lines,
correlation to model map of 0.04) and to a good map (solid lines,
correlation to model map of 0.66). See text for details.
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density stands out as the best of these measures (Table 3 and

Fig. 2). Used in a simple Bayesian estimator, the correlation

between map quality estimated with the skewness of electron

density with true map quality is about 0.90, while the next-best

estimator (the correlation of local r.m.s. density) gives a

correlation of only 0.85. Combining the two yields the most

useful estimator we have developed, with a correlation

between estimated and actual map quality of 0.92 and an r.m.s.

prediction error in map quality of 0.09.

With the exception of the mean figure of merit of phasing,

which does not depend on the hand of the heavy-atom sub-

structure, all the measures of map quality analyzed are

remarkably good discriminators between maps calculated

using the correct and inverse hands of the heavy-atom sub-

structure (Fig. 3).

The PHENIX AutoSol wizard uses a combination of the

skewness of electron density and the correlation of local r.m.s.

density to form a Bayesian estimator of map quality. The

PHENIX AutoSol wizard makes decisions about the heavy-

atom substructures to pursue based on these map-quality

estimates. Once density-modified maps are available, a model

is built into the maps and the map–model correlation is used to

identify the best overall solutions. This process yields density-

modified electron-density maps of approximately the same

overall quality as those obtainable with a perfect decision-

making system (Fig. 5).

Our Bayesian estimates of map quality, while highly useful

in evaluating experimental maps, are nevertheless not the best

indicators of the quality of the corresponding density-modified

maps. The map–model correlation obtained after preliminary

model building is a better indicator of the quality of density-

modified maps (Fig. 4 and Table 6).

In this work, we have ignored the resolution-dependence of

the measures of map quality. This is made possible in part by

the use of a high-resolution limit of 2.5 Å for all the calcula-

tions of map quality and is generally justified by the relatively

small remaining resolution-dependence of most of the

measures of map quality (Fig. 1). Nevertheless, it seems

possible that some improvement in estimation of map quality

might be obtained by including the resolution-dependence (or

the effective overall isotropic displacement factor) of the data

in the analysis. Additionally, we have assumed independence

of the various measures of map quality in (8a). We were not

able to improve the estimates of map quality using a simple

covariance-matrix approach to combining estimates of map

quality, but other more sophisticated approaches, together

with a much greater set of sample data, might lead to

improved estimates of map quality.
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